
As the size of genomic datasets continues to grow, some analyses will only 
be possible by using a cluster rather than a single machine. In recent years, 
modern big data frameworks have solved many problems related to 
parallel processing and enjoy broad support from commercial cloud 
providers, as well as being easy to run on a single machine. This allows us 
to think less about technical problems like file formats and thread 
management, instead focusing on the core bioinformatics problem. In this 
work we use the Apache Spark framework, and particularly its native 
programming language Scala, which for many applications can give much 
better performance than e.g. Python.

Frameworks like Apache Spark run on clusters with multiple machines, 
potentially in the 100’s or 1000’s. To run a job efficiently on such a cluster, 
it is essential to reduce communication between the machines. In practice 
this is done by controlling shuffling, which happens when all machines 
write data to all other machines (see image below for a small example with 
four machines). In addition to reducing the amount of shuffle data, it is 
also important to ensure that it is evenly distributed between the machines, 
since otherwise machines could be overwhelmed by receiving a big 
proportion of the data, stalling or crashing the entire cluster.

Towards Petabyte-scale k-mer Counting 
with Universal Frequency Minimizers

Johan Nyström-Persson (johan@jnpsolutions.io), JNP Solutions, Sumida-ku, Tokyo, Japan
Gabriel Keeble-Gagnère, Agriculture Victoria, AgriBio, Centre for AgriBioScience, Bundoora, VIC, Australia

Spark is generally able to process petabytes of data, and to scale up to clusters having thousands of machines, 
so it is reasonable to aim for this level as the next step. 1 PB of input data should correspond to quadrillions 
of k-mers, assuming metagenomic data similar to the Serratus dataset.

Based on our findings from the Serratus dataset, we estimate that the following parameters would be 
necessary to k-mer count 1 PB of metagenomic data:

Minimizer width (m): 17 or more
K-mer width (k): Freely chosen >= 25
Input size: 1 PB
Super-mer shuffle data size: 3.2 PB when k = 28
Distinct super-mer data size: 1.3 PB when k = 28
Number of buckets: 2.66 x 109

Total abundance (k-mer count): 1 x 1015 when k = 28

CPU requirement: 300,000 CPU-hours
Memory requirement: 4 GB per CPU

While these parameters are estimated and would need to be confirmed in practice, this points the way to the 
possibility of mapping the global k-mer space in its entirety. We expect the limiting factor to be handling the 
3.2 PB of shuffle data, for which fast storage and networking would be essential.

Towards petabyte scale

Minimizer orderings influence the length of super-mers, as well as their 
distribution into different bins. 
We previously introduced [3] the Universal Frequency Ordering for 
minimizers. This ordering helps control the maximum bin size, ensures an 
even bin size distribution, and also generates long super-mers. These 
properties greatly aid distributed k-mer processing. The figure shows a 
comparison of bin sizes generated by various minimizer orderings for the 
Tara Oceans marine metagenomic dataset. For our ordering unifreq, the 
maximum bin size was reduced by an order of magnitude, and the size 
distribution is mostly within a tight range, compared with the commonly 
used ordering signature. In experiments, this k-mer ordering was able to 
reduce memory usage to 1/8 of what the previous best Spark-based k-mer 
counter needed.

Evenly sized k-mer bins

 0

 50000

 100000

 150000

 200000

 250000

 300000

 350000

 400000

 450000

 500000

 0  1  2  3  4  5  6  7  8

N
u
m

b
e
r 

o
f 

b
in

s

frequency
random

signature
unifreq
unirand

unilex

K-mer bin sizes (total k-mers log10) k = 55, m = 10

Minimizers are substrings of length m < k for some m, that can be used to 
split a read into super-mers (super k-mers, or k+x-mers). They are the 
minimal m-mer in each k-mer for some ordering of m-mers (“minimizer 
ordering”). Super-mers are consecutive k-mers that share the same 
minimizer.
Long super-mers also help data compression, as a compact representation 
of their k-mers. Below is an example for k=5, m=10, with minimizers 
highlighted in blue.
Minimizers can also be used to bucket k-mers and super-mers, since a 
given k-mer will always have the same minimizer. 

Minimizers

TGGCGTCATTTTCCCCAATCATAGACTGTTGAAAGTGAACA…
TGGCGTCATT
 GGCGTCATTT
  GCGTCATTTTCCCCA
        TTTTCCCCAA
         TTTCCCCAAT
          TTCCCCAATC
           TCCCCAATCATAGAC 
                 ATCATAGACTG
                   CATAGACTGTTGAAA
                         CTGTTGAAAG 
                          TGTTGAAAGTGAACA 

K-mers are genomic subsequences of length k (typically 20-50, but in this 
work unbounded), which have many applications, including genome 
assembly, read binning, and metagenomic profiling. The most basic k-mer 
analysis is counting each distinct k-mer and producing a table of k-mer 
counts. Here, we study k-mer counting at extremely large scale as a 
gateway to enabling other kinds of genomic analysis at that scale. Below is 
a toy example for k = 10, where a read has been split into overlapping 10-
mers.

K-mers

TGGCGTCATTTTCCCCAATCATAGACTGTTGAAAG…
TGGCGTCATT
 GGCGTCATTT
  GCGTCATTTT
   CGTCATTTTC
    …
                 ATAGACTGTT
                   …
                                                    

By precounting each super-mer prior to the k-mer counting stage 
(internally in Spark), we reduce the impact of highly frequent k-mers or 
patterns in the data, since only distinct super-mers will remain for the final 
stage. Thus, we can ensure that highly skewed or repetitive data has no 
impact on the final load balancing. We also reduce the total size of the 
shuffle data by removing repeated elements.

On the other hand, heterogeneous, non-repetitive data can be load balanced 
with minimizers, as we have seen (left). Thus, the combination of pre-
counted superkmers and wide minimizers with the universal frequency 
ordering will be able to load balance any dataset, ensuring good 
performance.

The charts show the effect of this approach on the Serratus dataset (below).

Precounted super-mers

1. Umberto Ferraro Petrillo, Gianluca Roscigno, Giuseppe Cattaneo, Raffaele Giancarlo, FASTdoop: a versatile and efficient library for the input 
of FASTA and FASTQ files for MapReduce Hadoop bioinformatics applications, Bioinformatics, Volume 33, Issue 10, 15 May 2017, Pages 
1575–1577

2. Edgar, R.C., Taylor, J., Lin, V. et al. Petabase-scale sequence alignment catalyses viral discovery. Nature 602, 142–147 (2022). https://doi.org/
10.1038/s41586-021-04332-2
3. Johan Nyström-Persson, Gabriel Keeble-Gagnère, Niamat Zawad, Compact and evenly distributed k-mer binning for genomic sequences, 
Bioinformatics, Volume 37, Issue 17, 1 September 2021, Pages 2563–2569
4. Ferraro Petrillo U, Sorella M, Cattaneo G, Giancarlo R, Rombo SE. Analyzing big datasets of genomic sequences: fast and scalable collection 
of k-mer statistics. BMC Bioinformatics. 2019 Apr 18;20(Suppl 4):138. doi: 10.1186/s12859-019-2694-8. PMID: 30999863; PMCID: 
PMC6471689.

5. Barış Ekim, Bonnie Berger, and Yaron Orenstein. 2020. A Randomized Parallel Algorithm for Efficiently Finding Near-Optimal Universal 
Hitting Sets. In Research in Computational Molecular Biology: 24th Annual International Conference, RECOMB 2020, Padua, Italy, May 10–13, 
2020, Proceedings. Springer-Verlag, Berlin, Heidelberg, 37–53. https://doi.org/10.1007/978-3-030-45257-5_3

References

K-mer counting is a basic technique for analysis of genomic sequences. We previously introduced Discount[3], a highly scalable distributed k-mer counter based on 
Apache Spark, a modern big data framework. Here we describe how we managed to k-mer count a 6 TB metagenomic RNA dataset, with a total of 6 trillion k-mers, 
and speculate about how the technique might be scaled up to petabytes, enabling the counting of quadrillions of k-mers.

Our k-mer counter “Discount”, based on Apache Spark, is available as 
open source. Please see https://www.jnpsolutions.io/software/

Or get it from GitHub at: https://github.com/jtnystrom/discount

Discount builds on the Fastdoop library[1] to be able to read FASTA and 
FASTQ files efficiently. It was inspired by FastKmer[4], and minimizer 
sets are generated by the PASHA tool[5].

Open source

Apache Spark - a big data 
framework

To test the overall scalability of our method, we applied it to the Serratus collection of transcriptomic assemblies 
[2]. For k=28, it had a total of 5.6 trillion k-mers. This is about 20x larger than what we previously studied in [3]. 
The figure shows our improved counting pipeline for this project (available as open source in Discount 2.3.0). Pre-
counted supermers was essential to making this work with modest memory (4 GB per CPU). The counting took 
1760 CPUh. Machines had 16 CPUs, 64 GB RAM and 1 TB SSD each.

K-mer counting the Serratus dataset

1 2 3 4

1 2 3 4

K-mer analysis

Sampling

Splitting

Count k-mers

Input sequences

Minimizer frequencies

Super-mers (shuffle and count)

1% fraction

All

ACTGCTGGAGTTAA 

ACT: 10
CTG: 7
GGA: 6

ACTGCT
  TGCTGG
    CTGGAG
ACTGCT

Universal k-mer
hitting set

K-mer statistics K-mer counts table

Distinct: 1,000,000
Total: 5,000,000

ACTGC: 100
CTGCT: 71
TGCTG: 5

Count super-
mers

ACTGCT: 10
TGCTGG: 2
CTGGAG: 1

6.1 TB of RNA assemblies 

19.3 TB of super-mers
Max. 2.6 million in largest 
bucket

7.7 TB of distinct super-
mers
Max. 114,000 in largest 
bucket

Number of buckets            10,399,311
Distinct k-mers       1,566,071,947,264
Unique k-mers         1,089,646,166,964
Total abundance       5,588,605,280,883
Mean abundance                    3.569
Max abundance               139,750,690
Super-mer count         205,448,038,759

Toy example (k=5, m=3) Serratus (k=28, m=13)

Distinct super-mers (shuffle into bins)

Discount stages


